Thursday, 22 March 2018

Quantum Electric Dipole Lattice

Dressel, Martin, Elena S. Zhukova, Victor G. Thomas, and Boris P. Gorshunov. "Quantum Electric Dipole Lattice." Journal of Infrared, Millimeter, and Terahertz Waves (2018): 1-17.
Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H2O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H2O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H2O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice.

"Complementary experiments were conducted utilizing a pulsed THz time-domain TeraView spectrometer. "

for full paper see

For more information about TeraView see