Dan Sporea ; Laura Mihai ; Adelina Sporea ; Gabriela Crăciun ; Elena Mănăilă
Abstract:
In this paper, we report the results concerning electron beam irradiation of mid-IR windows and mid-IR detectors for possible use in trace gas detection systems, in the 1 μm to 5 μm spectral range under ionizing radiation conditions. Four windows materials (CaF2, BaF2, ZnSe, and sapphire) for the mid-IR were tested as they were exposed to electron beam irradiation at a dose rate of 4 kGy/min, for doses from 0.5 kGy to 2.2 kGy.
Two IR detectors (photoconductive – PbSe, photovoltaic – InAs) were subjected to the same type of irradiation at dose rate of 4 kGy/min, in three subsequent exposures, for a total dose up to 6.8 kGy. Before the irradiation and after each irradiation step the windows were measured as it concerns the spectral optical transmittance, spectral optical diffuse reflectance, and, in the THz range (0.06 THz – 3 THz), the dielectric constant and the refractive index were evaluated. THz imaging analysis of the irradiated samples was done. For the IR detectors we measured at different irradiation stages the spectral responsivity and the dark current. The most affected by electron beam irradiation was the CaF2 window, in the spectral interval 250 nm – 800 nm.
The spectral transmittance of the four windows remained unchanged after their exposure to ionizing radiation in the near-IR and mid-IR. Noticeable variations of the spectral responsivity appeared upon electron beam irradiation in the case of the InAs detector. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Link
No comments:
Post a Comment