Physics Reveiw B 85, 100504(R) (2012)
A. Charnukha1, J. Deisenhofer2, D. Pröpper1, M. Schmidt2, Z. Wang2, Y. Goncharov2,3, A. N. Yaresko1, V. Tsurkan2,4, B. Keimer1, A. Loidl2, and A. V. Boris1
1Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
2Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86159 Augsburg, Germany
3Institute of General Physics, Russian Academy of Sciences, 119991 Moscow, Russia
4Institute of Applied Physics, Academy of Sciences of Moldova, MD-2028 Chisinau, R. Moldova
Abstract
We report the complex dielectric function of high-quality nearly-stoichiometric Rb2Fe4Se5 single crystals withTc=32 K determined by wide-band spectroscopic ellipsometry and time domain transmission spectroscopy in the spectral range of 1 meV≤ℏω≤6.5 eV at temperatures of 4 K≤T≤300 K. This compound simultaneously displays a superconducting and a semiconducting optical response. It reveals a direct band gap of ≈ 0.45 eV determined by a set of spin-controlled interband transitions. Below 100 K, in the lowest terahertz spectral range, we observe a clear metallic response characterized by the negative dielectric permittivity ɛ1 and bare (unscreened) ωpl≈100 meV. At the superconducting transition, this metallic response exhibits a signature of a superconducting gap below 8 meV. Our findings suggest a coexistence of superconductivity and magnetism in this compound as two separate phases.
for full paper see http://link.aps.org/doi/10.1103/PhysRevB.85.100504
.........Time-domain terahertz (THz) trans- mission measurements were carried out in the 1–10-meV spectral range using a TPS spectra 3000 spectrometer with f/2 focusing optics (TeraView Ltd.). The transmitted intensity .........
For more information about the TPS spectra 3000 register for free here or (http://www.teraview.com/info/)
No comments:
Post a Comment